
User guide for GADfit version 2.0.1

August 2023

Contents
1 Introduction 2

1.1 Contributors . 2
1.2 Terms of use . 3

2 Method 3
2.1 Modified Levenberg-Marquardt 4
2.2 Global nonlinear optimization . 8
2.3 Automatic differentiation . 8

2.3.1 Forward mode . 9
2.3.2 Reverse mode . 12
2.3.3 Implementation . 14
2.3.4 AD with numerical integration 15

3 Building and linking 18
3.1 Building process . 19

3.1.1 C++ prerequisites . 20
3.1.2 Fortran prerequisites . 20
3.1.3 CMake configuration variables 21

3.2 Runtime linking . 21
3.2.1 C++ . 21
3.2.2 Fortran . 22

3.3 Notes on using GADfit in other CMake projects 23

4 Usage 24
4.1 Parallelism . 24

4.1.1 C++ . 24
4.1.2 Fortran . 24

4.2 Example input . 25
4.2.1 C++ . 25
4.2.2 Fortran . 25

4.3 Defining the fitting function . 26
4.3.1 C++ . 26
4.3.2 Fortran . 26

1

4.4 Fitting procedure . 27
4.4.1 C++ . 27
4.4.2 Fortran . 28

4.5 User interface . 30
4.5.1 C++ . 30
4.5.2 Fortran . 34

4.6 Internals . 43
4.6.1 Fortran . 43

5 Developer notes 46
5.1 C++ . 46

5.1.1 Unit tests . 46
5.1.2 Code linters . 47
5.1.3 Code coverage . 47
5.1.4 Coding rules . 47

5.2 Fortran . 47
5.2.1 Coding rules . 47

5.3 Version control . 49

6 Summary 50

7 Troubleshooting 50

1 Introduction
GADfit is an implementation of global nonlinear curve fitting based on automatic
differentiation (AD). Global fitting refers to fitting many data sets simultane-
ously with some parameters shared among the data sets but not necessarily
finding the global minimum in parameter space. The optimization procedure
is based on a modified Levenberg-Marquardt algorithm which is well-suited for
difficult large scale problems with a strong interdependence of parameters. The
Jacobian and other quantities requiring differentiation are evaluated using AD
instead of finite differences which ensures that the derivatives are always cal-
culated with the same precision as function evaluation. The cost of computing
the derivatives is independent of the number of fitting parameters and is a small
constant of function evaluation resulting in very efficient code. The method can
be used for fitting functions of high complexity which, in the present imple-
mentation, include nonlinear combinations of elementary and special functions,
single or double integrals, and any control flow statements allowed by the pro-
gramming language.

GADfit is currently hosted by GitHub.

1.1 Contributors
Go to https://github.com/raullaasner/gadfit/graphs/contributors to
see a list of contributors.

2

https://github.com/raullaasner/gadfit/graphs/contributors

1.2 Terms of use
Licensed under the Apache License, Version 2.0 (the “License”); you may not
use this file except in compliance with the License. You may obtain a copy
of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless re-
quired by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for
the specific language governing permissions and limitations under the License.

2 Method
GADfit is based on the Levenberg-Marquardt (LM) algorithm [1], which is a
standard technique for solving nonlinear least squares problems. A least squares
problem refers to minimizing the sum of the squares of the differences between
the data and a curve constructed from a parameterized function. If the model
curve (the fitting function) has a nonlinear dependence on the fitting parameters,
it is a nonlinear least squares problem.

Given a set of n data points (xi, yi), where xi are the independent variables,
and a model function f(x, β1, . . . , βk), which depends on x and k additional
parameters (the fitting parameters), the sum of squares is defined as

χ2 =
n∑

i=1

[
yi − f(xi,β)

σi

]2
, (1)

where σi are the data point uncertainties (standard deviations). As with all
nonlinear optimization algorithms, Levenberg-Marquardt is an iterative proce-
dure. One starts with an initial guess for the parameter vector β and finds an
increment δ such that β → β + δ leads to the lowering of χ2. This is repeated
until some convergence criterion is satisfied. Following the original LM method,
the increment vector (the step) is given by[

JTJ + λ diag
(
JTJ

)]
δ = JTR, (2)

where1

Jij = 1
σi

∂f(xi,β)
∂βj

(3)

defines the Jacobian,
Ri = yi − f(xi,β)

σi
(4)

defines the residual vector, and where the damping parameter λ allows the
nature of the algorithm to adaptively change between the steepest descent and
the Gauss-Newton method. If χ2 is far from its minimum, λ should have a large
value, bringing the algorithm closer to steepest descent. On the other hand,

1Usually the uncertainties σi are not included in the definition.

3

http://www.apache.org/licenses/LICENSE-2.0

close to the minimum, Gauss-Newton is a better choice. A simple strategy for
updating λ would be as follows: if for the current iteration χ2 is smaller than
for the previous iteration, accept the step and decrease λ by a factor of 10.
Otherwise increase λ, solve Eq. (2), and recalculate χ2 with the new step. If χ2

still increases, stop the procedure, otherwise proceed with the next iteration.
If the procedure stops after the first iteration, start again with a larger initial
value for λ. A sufficiently large λ always exists that leads to a decrease of χ2

[1].

2.1 Modified Levenberg-Marquardt
What was described above is the classical LM algorithm, which is close to the
default regime of GADfit. In this section, we discuss several interesting mod-
ifications to the algorithm (see [2, 3, 4] and references therein), which aim to
improve the convergence speed and the sensitivity to the initial guess.

The damping matrix. Originally, the rationale for choosing the damping
matrix as DTD ≡ diag(JTJ) in Eq. (2) was to make the algorithm invariant to
the rescaling of parameters. This is important when the parameters have very
different magnitudes and the algorithm has to follow a narrow canyon in the
parameter space in search of the minimum of χ2. However, this poses a prob-
lem when the algorithm is in a region of space where the model is insensitive to
the parameters. When this happens, the diagonal entries of both JTJ and the
damping matrix DTD become small for some parameters, which leads to un-
controllably large steps. There is a chance that some parameters are incorrectly
pushed to infinite values, a phenomenon known as parameter evaporation. A
compromise for both retaining the invariance to rescaling and guarding against
parameter evaporation is to set the diagonal entries of DTD to the largest di-
agonal entries of JTJ yet encountered. This approach is efficient provided that
the initial guess does not lie on a plateau of the χ2 surface in the parameter
space. If this condition is not satisfied then, as a simple and robust solution,
the user can specify the minimum values for the diagonal of DTD.

Optimal path towards the minimum. Following a geometric interpreta-
tion of nonlinear optimization, it has been suggested that a geodesic in the
parameter space is the most natural path for the algorithm to follow. When the
algorithm is navigating a narrow curved canyon then, instead of taking simple
steps along the gradient of χ2, it would be more efficient to take the curvature
of the canyon into account and move along parabolic trajectories. This is es-
pecially beneficial for functions like the Rosenbrock function. To second order,
the step is then given by

δ =δ1 + δ2,

δ1 =
[
JTJ + λDTD

]−1
JTR,

δ2 = − 1
2

[
JTJ + λDTD

]−1
JTΩ,

(5)

4

where (Einstein summation implied)

Ωi = ∂2f(xi, β)
∂βj∂βk

δj
1δk

1 (6)

is the second directional derivative along δ1. From geometric considerations, δ1
and δ2 are also called the velocity and the accelerations terms. The acceleration
term either magnifies or shrinks the velocity term, or tilts it in a different direc-
tion. We do not delve here into the theoretical foundations leading to Eq. (5)
and its comparison to alternative ways of including second order corrections.
The interested reader is referred to [2, 3, 4] for an in-depth discussion. We only
make a few additional remarks for practical calculations.

Geodesic acceleration is most useful in a narrow canyon. When the algorithm
has not yet found a canyon and is scanning a large plateau, which is where the
initial guess is likely to be, then damping is small and δ1 is large. This causes
δ2 to be even larger and pointing in the opposite direction, which may steer
the algorithm in the wrong direction. To avoid this, we require the effect of the
second order term to always be smaller than the first order term,

√
δ2Dδ2√
δ1Dδ1

< α, 0 ≤ α < 1, (7)

where D has been included to ensure scale invariance.
Whether including the acceleration term pays off depends on the model and

is ultimately for the user to test. With automatic differentiation the second
directional derivative has about the same cost as the Jacobian, which is 3–4
times function evaluation.

Uphill steps. Accepting only downhill steps is the safest strategy, especially
when one is far from the minimum. However, if the algorithm has to follow a
narrow canyon, only very short steps would be acceptable, making the search
costly. It might then be beneficial to conditionally also allow uphill steps. This
can be thought of as analogous to the trajectory of a bobsled racer. A useful
criterion for allowing an uphill step is

βi = cos(δ1i, δ1i−1),
(1 − βi)bχ2

i < min(χ2
1, . . . , χ2

i−1),
(8)

where βi is the cosine of the angle between the proposed step of the current
iteration and that of the previous iteration. Only the velocity and not the
acceleration term is considered here. According to Eq. (8), uphill steps are
allowed only for acute angles, and the probability of acceptance increases with
the alignment of δ1i and δ1i−1. The RHS of the inequality test usually refers to
the sum of squares of the previous iteration, but we use the min function here in
case any of the previous steps were uphill. Reasonable values for the exponent
are 1 and 2, with b = 2 allowing greater uphill steps than b = 1.

5

In addition to faster convergence, this so-called “bold” acceptance criterion
also exhibits a smaller probability of getting stuck at the local minima, which
reside on the floor of the canyon.

The drawback of this criterion is the reduced stability of the algorithm, since
allowing uphill steps makes it more susceptible to parameter evaporation. It is
better suited for problems where the canyon is easily found, but navigating the
canyon is the main difficulty. This is in contrast to problems that start in a
difficult region of the parameter space, but once heading in the right direction,
the minimum is easily found.

Updating the damping parameter. The simple scheme of raising and low-
ering λ by a factor of 10 as the steps are accepted or rejected is often adequate,
but can be improved upon. Increasing λ by a small factor λ↑ when the step
is uphill and decreasing it by a larger factor λ↓ when the step is downhill is
expected to lead to a faster convergence (see Sec. VIII.C of [3]). The optimal
values for the raising and lowering factors depend on the problem. One might
start with, e.g., λ↑ = 3 and λ↓ = 5.

A more advanced method for updating the damping parameter makes use
of the gain factor,

ρ = χ2(x,β) − χ2(x,β + δ1)
χ2(x,β) − |R − 2(J + λD)δ1|2

= χ2(x,β) − χ2(x,β + δ1)
2δ1(JTJ + λDTD)δ1

. (9)

The second term in the denominator is the linearly predicted value of χ2 using
the new parameter vector β + δ1. A downhill step always produces a positive ρ
and thus the steps can be accepted or rejected based on the sign of ρ. If ρ is close
to zero, λ is updated with λ↑ and λ↓. However, if ρ is much greater than zero
then the step should still be accepted but now the algorithm is stepping out of its
trust-region. The next step is likely to increase χ2, which requires the lowering
of λ. The oscillating behavior of λ can be avoided by limiting the decrease of
λ so that the algorithm is unable to step out of the trust-region. Following
Nielsen [5], this can be achieved by multiplying λ by max[1/λ↓, 1 − (2ρ − 1)3]
for ρ > 0. This method tends to increase the total number of iterations, but
since the steps are accepted more often, χ2 is calculated by a lesser number of
times per iteration, which can overall speed up the procedure.

Another method for updating the damping parameter is due to Umrigar
and Nightingale (unpublished). The idea is to vary λ based on the history of
the success of previous steps. If the current step is accepted then λ is either
decreased by a factor of ξ if the change in the direction of δ1 is less that π/2, left
unchanged if the change is more than π/2, or increased if the step was uphill:

λi =λi−1/ξ, cos(δ1i, δ1i−1) ≥ 0, (10)
λi =λi−1, cos(δ1i, δ1i−1) < 0, (11)
λi =λi−1

√
ξ, χ2

i ≥ χ2
i−1. (12)

6

If the step is rejected, then λ is always increased, but the increase depends on
the change of δ1:

λi =λi−1
√

ξ, cos(δ1i, δ1i−1) ≥ 0, (13)
λi =λi−1ξ, cos(δ1i, δ1i−1) < 0. (14)

ξ is constrained to the range 1. . . 100 and is given by

ξ = (1 − |2a − 1|))−2
, (15)

where a is updated according to

ai = ai−1m + A(1 − m), (16)

where

A =1 cos(δ1i, δ1i−1) ≥ 0 and χ2
i < χ2

i−1, (17)
A =1/2, cos(δ1i, δ1i−1) < 0 or χ2

i ≥ χ2
i−1, (18)

A =0 if step was rejected. (19)

The method works well in some cases but has thus far not seen extensive testing.
In GADfit, the inital values for a and m are set to 0.5 and e−0.2.

Convergence criteria. At the solution, the residual vector y−f is orthogonal
to the range of the Jacobian, Jδ1. A measure of convergence can then be taken
as the cosine of the angle between these two quantities,

| cos ϕ| = |RJδ1|
|R||Jδ1|

. (20)

In addition to (20), most of the standard convergence criteria are available in
GADfit. See the sections for input parameters to the fitting procedure for more
details.

Robust cost functions In order to damp the effect of outliers in the data,
instead of minimizing the sum of squared differences [Eq. (1)], we can minimize
the quantity ∑

i

ρ

[(
yi − f(xi,β)

σi

)2
]

(21)

instead. This leads to the following modifications of the optimization algorithm:

Jij =

√
∂ρ(z)
∂zi

1
σi

∂f(xi,β)
∂βj

,

Ri =

√
∂ρ(z)
∂zi

yi − f(xi,β)
σi

,

(22)

7

where ∂ρ(z)/∂zi is shorthand for

∂ρ(z)
∂z

∣∣∣∣
z=[(yi−f(xi,β))/σi]2

.

The linear case, ρ(z) = z, reduces to the standard least squares problem. An-
other option is to use the Cauchy loss function, ρ(z) = ln(1 + z), which severely
weakens the influence of outliers.

2.2 Global nonlinear optimization
When fitting many curves simultaneously with shared parameters, the data sets
are stacked to form a single data set, which is then fitted with a piecewise
function. The fitting function is constructed such that some parameters only
have an effect on a subset of data points (local parameters) whereas others are
active over the whole data range (global parameters).

As an example, take two data sets with sizes n and m and a fitting function
f(x, α, β), which depends on two parameters α and β. α is different for the two
curves whereas β is shared. For instance, for an exponential decay process these
could be different initial amplitudes but the same decay constant. The global
Jacobian is then

J =

1
σ1

∂f(x1,α,β)
∂β

1
σ1

∂f(x1,α,β)
∂α1

0
.

1
σn

∂f(xn,α,β)
∂β

1
σn

∂f(xn,α,β)
∂α1

0
1

σn+1

∂f(xn+1,α,β)
∂β 0 1

σn+1

∂f(xn+1,α,β)
∂α2

.
1

σn+m

∂f(xn+m,α,β)
∂β 0 1

σn+m

∂f(xn+m,α,β)
∂α2

, (23)

where the notation is ∂f/∂αi ≡ ∂f/∂α|α=αi
. For easier implementation, the

global parameters always occupy the first columns in the Jacobian. Similarly,
with 4 data sets, each consisting of 100 points, and with 4 local and 2 global
parameters, the Jacobian would have the dimensions 400 × 18. Sparsity of the
Jacobian is not exploited. Since no conceptual change is introduced, the fitting
procedure follows the same algorithm as with a single curve.

2.3 Automatic differentiation
If the Jacobian (23) was calculated using finite differences, the maximum ac-
curacy one can hope for is half the number of significant digits corresponding
to machine precision (about 7 for double precision). This is often sufficient if
the fitting function is a simple combination of elementary functions such as the
Gaussian or an exponential. However, problems can arise with difficult functions
such as those containing a highly nonlinear combination of elementary or special
functions or those requiring numerical integration. In those situations, both ac-
curacy and the computational cost of finite differences can become problematic.

8

Another thing to keep in mind as that with finite differences, the evaluation
of Jij always takes two function calls and the evaluation of the whole gradient
(Ji1, . . . , Jin) takes 2n function calls.

In contrast, with automatic differentiation the derivatives are obtained with
the same accuracy as function evaluation itself, while the computational cost
is 3–4 times that of function evaluation irrespective of the number of parame-
ters [6]. AD exploits the fact that any mathematical function, no matter how
complicated, is executed as a sequence of elementary arithmetic operations on a
computer. By applying the chain rule of calculus at each step of execution, the
derivative of a function can be computed automatically, with working accuracy,
and using at most a small constant of the computer time required for function
evaluation. It should be noted that while AD is not numerical differentiation,
it is also not symbolic differentiation. The chain rule is applied directly to the
results of elementary operations and the symbolic form of the full derivative is
never stored in any way. Only the derivatives of the elementary functions need
to be coded by hand (in AD literature, the term “elemental function” is more
common). Afterwards, the algorithm can be applied to functions of arbitrary
complexity.

In this document, we describe two flavors of AD. The forward mode of AD
is well-suited for calculating the gradient of a multi-valued function depending
on a single parameter (just the derivative in this case) or for calculating the
directional derivative of a single-valued function depending on many parame-
ters. The reverse mode is suitable for calculating the gradient of a single-valued
function depending on many parameters. For the general case of n input and m
output variables, a nontrivial mix of both modes would in principle be optimal.

2.3.1 Forward mode

The basic idea behind the forward mode is to extend all numbers to include a
second component,

x → x̃ = x + ẋd ≡ (x, ẋ), (24)

resulting in so-called dual numbers. The arithmetic on dual numbers is defined
by requiring d2 = 0. This is in contrast to ordinary complex numbers, which
are also dual numbers but where the second component is defined according to
i2 = −1. Elementary arithmetic between dual numbers can then be written as
follows:

x̃ + ỹ =x + y + (ẋ + ẏ)d = (x + y, ẋ + ẏ),
x̃ỹ =xy + xẏd + ẋyd + ẋẏd2 = (xy, ẋy + xẏ),
x̃

ỹ
=x + ẋd

y + ẏd
= (x + ẋd)(y − ẏd)

y2 − ẏ2d2 =
(

x

y
,

ẋy − xẏ

y2

)
,

sin x̃ = . . . = (sin x, ẋ cos x),

(25)

where the last equality follows after a series expansion. Any ordinary number
can be interpreted as x̃ = x + 0d. It is seen from Eqs. (25) that the second

9

component, also called the tangent, always has the form of the derivative of the
operation. In fact, it can be proven that for any function f(x), with a dual
number as its argument,

f(x̃) = f(x) + f ′(x)ẋd = (f(x), f ′(x)ẋ) , (26)

where f ′(x) is the derivative of f evaluated at x. Applying the dual number
arithmetic to the composition of f and g, we get

f(g(x̃)) = f(g(x) + g′(x)ẋd) = (f(g(x)), f ′(g(x))g′(x)ẋ) . (27)

With Eq. (27) we have actually rediscovered the chain rule! Repeatedly applying
Eq. (27) yields the derivatives of arbitrarily complex functions.

Which derivative the dot symbol represents depends on the initial values
of the tangents. It can be shown that in general the initial values define the
direction of the derivative in the space of independent variables. For instance,
if we have two independent variables x and y and require the derivative with
respect to x, then the tangent vector is (1, 0) in the xy-plane and the variables
should be seeded with ẋ = dx/ dx = 1 and ẏ = dy/ dx = 0. For a directional
derivative ∇x,yf(x, y)v, where v = (α, β), the seeds would be ẋ = α and ẏ = β.

As a simple example, we shall evaluate ∂
∂x f(x, y) for f(x, y) = xy + sin(xy)

at (x0, y0). Applying the rules of dual numbers, the computational graph for
this procedure, in terms of the intermediate results ṽi, is

ṽ1 =(x0, ẋ) = (x0, 1),
ṽ2 =(y0, ẏ) = (y0, 0),
ṽ3 =ṽ1ṽ2 = (v1v2, v1v̇2 + v̇1v2) = (x0y0, y0),
ṽ4 = sin ṽ3 = (sin v3, v̇3 cos v3) = (sin x0, y0 cos(x0y0)),
ṽ5 =ṽ3 + ṽ4 = (x0y0 + sin x0y0, y0 + y0 cos(x0y0)).

(28)

For such a simple case, it is easy to analytically check that the tangent of ṽ5
is indeed the correct result. Note that AD is as economical as the function
evaluation in terms of reusing intermediate results — the derivative of xy (the
tangent of ṽ3) is computed only once even though it appears in two places.
We remind that AD is not symbolic differentiation since there is no record of
the symbolic form of the derivatives. The algorithm only needs to recognize
the elemental operation at hand, whose derivative needs to be precoded, but
otherwise the procedure is completely mechanical. At each step in the com-
putational graph, the algorithm has forgotten how it got there. For a better
illustration, here is a throwaway C++ implementation of the same calculation
with (x0, y0) = (1.5, 0.7).

class ddouble {
public:

double val, dot;
ddouble(double val, double dot) : val { val }, dot { dot } {}

};

10

auto operator+(ddouble x, ddouble y) -> ddouble {
return ddouble(x.val + y.val, x.dot + y.dot);

}
auto operator*(ddouble x, ddouble y) -> ddouble {

return ddouble(x.val * y.val, x.val * y.dot + x.dot * y.val);
}
auto sin(ddouble x) -> ddouble {

return ddouble(sin(x.val), x.dot * cos(x.val));
}
int main() {

ddouble x(1.5, 1);
ddouble y(0.7, 0);
ddouble f;
f = x * y + sin(x * y);
std::cout << f.dot; // 1.0483

}

If, instead of just ∂
∂x , the whole gradient ∇x,yf(x, y) is required, a second

calculation needs to be performed starting with ẋ = 0, ẏ = 1. The accuracy is
the same as before, but the cost is twice as much. Note that for each partial
derivative, the values (first components) of the elemental operations are the same
and could be reused. Due to the O(n) scaling, the forward mode is generally
not used for gradient calculation. Instead, it is better suited for directional
derivatives, where a single sweep produces the value of ∇pf(p)v, where p is a
vector of independent variables.

In GADfit, the forward mode comes into play in only one place, which is the
acceleration term (5) which contains a second order directional derivative (6).
The generalization of the forward mode to second order is straightforward. The
AD numbers now contain three components,

x̃ = x + ẋd + ẍd2, (29)

and the arithmetic is defined by requiring third and higher order terms to be
zero, d3 = 0. The elemental operations become somewhat more complex,

x̃ + ỹ =x + y + (ẋ + ẏ)d + (ẍ + ÿ)d2,

x̃ỹ =xy + (ẋy + xẏ)d + (ẍẏ + 2ẋẏ + xÿ)d2,

x̃

ỹ
=x

y
+ ẋy − xẏ

y2 d +
ẍy − xÿ − 2ẋẏ + 2 xẏ2

y

y2 d2,

sin x̃ = sin x + ẋ cos xd + (ẍ cos x − ẋ2 sin x)d2,

(30)

but otherwise the algorithm has the same structure. The complexity is actually
less than appears in Eqs. (30), since once the first component of the resulting
number has been calculated, it can be immediately used in the calculation of the
second component. And for the third component, both of the previous terms

11

are available. For instance, the last two of Eqs. (30) can be rewritten in the
form

ṽ = x̃

ỹ
= v + ẋ − vẏ

y
d + ẍ − vÿ − 2v̇ẏ

y
d2,

ṽ = sin x̃ = v + ẋ cos xd + (ẍv̇/ẋ − ẋ2v)d2.

(31)

In order to compute the second directional derivative ∂i∂jf(x;β)vivj , where
β is the parameter vector and ∂i ≡ ∂/∂βi, the parameters should be seeded with
(βi, vi, 0). A single sweep then produces the function value and the directional
first and second derivatives.

2.3.2 Reverse mode

The reverse mode is generally considered superior to the forward mode because
it is more efficient for calculating the gradient which is more often required than
a directional derivative. The Jacobian is exactly such a quantity, where each
row (Ji1, . . . , Jin) is the gradient of a single-valued function f(xi,β). At the
same time, it is also harder to implement since it consists of two parts — a
forward sweep, which performs function evaluation, and a return sweep, which
processes the computational graph in reverse order to yield the partial deriva-
tives. Information about the elemental operations must be saved during the
forward sweep which necessitates some form of memory management. This is in
contrast to the forward mode where both the function value and the derivatives
are obtained by traversing in the same direction along the computational graph
and no additional memory needs to be used.

The reverse mode is best understood with an example. The sequence of
elemental operations for the evaluation of f(x, y) = xy + sin x

y at the point
(2.3, 0.8), which we call the forward sweep, is

v1 = x = 2.3000, (32a)
v2 = y = 0.8000, (32b)
v3 = v1v2 = 1.8400, (32c)
v4 = v1/v2 = 2.8750, (32d)
v5 = sin v4 = 0.2634, (32e)
v6 = v3 + v5 = 2.1034, (32f)

where the first two operations are just variable initialization. While the order
of some of these operations can be compiler specific, it does not influence the
outcome of the AD method. One might suppose that in order to compute the
gradient ∇x,yf , it is necessary to process each of Eqs. (32) twice, once for either
parameter. However, the number of operations can be lowered by applying the
chain rule backwards, i.e., by processing Eqs. (32) in the order v6 . . . v1 in terms
of the adjoint quantities v̄i ≡ ∂f/∂vi. This is called the return sweep. Two
trivial results are then immediately obtained from Eq. (32f):

v̄3 = ∂f

∂v3
= ∂v6

∂v3
= 1, v̄5 = ∂f

∂v5
= ∂v6

∂v5
= 1. (33a)

12

Using the result for v̄5, Eq. (32e) then yields the adjoint of v4,

v̄4 = ∂v6

∂v4
= ∂v6

∂v5

∂v5

∂v4
= v̄5 cos v4 = 1 × (−0.9647) = −0.9647. (33b)

Next, we process the two components of Eq. (32d),

v̄1 = v̄4
∂v4

∂v1
= v̄4

v2
= −1.2059, v̄2 = v̄4

∂v4

∂v2
= − v̄4v1

v2
2

= 3.4669. (33c)

From Eq. (32c),

v̄1 = v̄1 + v̄3
∂v3

∂v1
= −0.4059, v̄2 = v̄2 + v̄3

∂v3

∂v2
= 5.7669. (33d)

The computation of v̄i is cumulative. If some variable vi appears several times
in the forward sweep then all occurrences of vi must be accounted for. This is
seen in Eqs. (33d), which remember the previous values of v̄1 and v̄2. With the
above scheme, Eqs. (32a) and (32b) would trivially yield v̄1 = v̄1 and v̄2 = v̄2
and are not processed in practice. We thus have the result

∇x,yf(x, y) = (−0.4059, 5.7669). (34)

For such a simple example finite differences would of course produce the same
result. However, some benefit of the reverse mode is already seen — a single
sweep produces the partial derivatives of both variables. This property becomes
especially advantageous for optimization problems with a large number of fitting
parameters.

The algorithm can now be formulated as shown in Table 1. The first n oper-

Table 1: The reverse mode of AD. a += b is a shorthand for a = a + b.
Forward sweep Return sweep

vi = xi, i = 1 . . . n ∂f∂xi = v̄i, i = 1 . . . n
vi += gi(vj⇝i), i = n + 1 . . . n + m v̄i += v̄j⇝i∂vj⇝i/∂vi

f = vn+m v̄n+m = ∂f/∂vn+m = 1

ations of the forward sweep initialize n independent variables. The intermediate
values vi are then calculated by applying the elemental operations gi to all vj of
which vi directly depends on (denoted with⇝). The last one of the m interme-
diate values is the function value, f = vn+m. Information about each elemental
operation during the forward sweep must be saved as it is required during the
return sweep. The return sweep moves in the opposite direction, starting with
∂f/∂vn+m = ∂f/∂f = 1 and followed by the calculation of v̄i as illustrated in
the above example. The partial derivatives are given by the first n values of the
adjoints array v̄.

13

2.3.3 Implementation

GADfit comes in two implementations — in C++ and in Fortran, both based
on operator overloading. The basic variable is the “AD variable”,

// C++
class AdVar
{
public:

double val, d, dd;
int idx;
...

};

! Fortran
type advar

real(kp) :: val, d = 0.0_kp, dd = 0.0_kp
integer :: index = 0

contains
...

end type advar

This variable type is used for both forward and reverse modes. Each instance
has fields for the value and first and second derivatives, and an index field. The
former three are double or quadruple (Fortran only) precision floating point
numbers. Index is zero for “passive” variables, for which differentiation is not
required, and is nonzero otherwise. Which mode is currently in use is determined
by the sign of the index variable (idx or index). Whereas the d and dd fields are
part of the forward mode only, the index field is required for both modes. For
the forward mode, the reason to use the index is to immediately identify whether
the variable is passive or active and thus many calculations involving d=0.0 and
dd=0.0 can be avoided. In the forward mode, it only matters whether the index
is zero or nonzero, whereas in the reverse mode, each new active variable is
given a unique index.

The reverse mode is complicated by the fact that during the forward sweep
each elemental operation2 must be recorded by saving the indices of the partic-
ipating variables and of the operation code into an array called the execution
trace. The intermediate (forward) values are saved into a separate array. As an
example, if the variables a and b had indices 4 and 5, and the operation code for
addition were 23, then for the operation c = a+b that section of the trace would
read (. . . , 4, 5, 6, 23, . . .), where 6 is the index of the new variable c. For unary
operations, there would be 3 entries in the trace, (. . . , in, out, opcode, . . .), for
ternary operations 5 entries and so on. At the beginning of each return sweep,
the adjoints array is reinitialized to zero with the last element set equal to 1. The
execution trace is then processed starting with the last element, and the adjoints

2Not to be confused with the Fortran “elemental” keyword. In fact, these are all impure
non-elemental functions.

14

are calculated according to the AD algorithm, first by identifying the relevant
operation (switch(op_id) or case select(op_id)). To summarize, the main
AD work variables in the reverse mode, along with their internal names, are

• the intermediate values (reverse_work::forwards or forward_values),

• the adjoints (reverse_work::adjoints or adjoints),

• the execution trace (reverse_work::trace or trace),

• the constants (reverse_work::constants or ad_constants).

No work arrays are required for the forward mode. The current list of elemental
operations includes

• −x1, x1 ± x2, x1x2, x1
x2

, exp(x1),
√

x1, xx2
1 , |x1|, ln x1,

• sin x1, cos x1, tan x1, sinh x1, tanh x1, asin x1, acos x1,
atan x1, asinh x1, acosh x1, atanh x1,

• erf(x1) = 2√
π

∫ x1
0 e−t2 dt, Li2(x1) = −

∫ x1
0

ln(1−u)
u du,

•
∫ b(x1,...,xn)

a(x1,...,xn) f(x1, . . . , xn; t) dt,

where xi is either an AD variable, a real number of single/double/quadruple
precision, or an integer. Integrals can be nested up to two layers, i.e., only single
and double integrals are allowed. New elemental operations can be added to the
source code without too much effort. Alternatively, any requests/suggestions are
most welcome at https://github.com/raullaasner/gadfit/issues. Unless
the proposed elemental operation depends on a nonstandard external library,
we will make an effort to include it in the next release.

2.3.4 AD with numerical integration

GADfit supports fitting functions containing bounded, semi-infinite, and infinite
integrals. Numerical integration is performed using the adaptive Gauss-Kronrod
algorithm. Default is the 15-point rule; also available are 21, 31, 41, 51, and 61
point rules. The integration interval is divided into subintervals, and on each
iteration the subinterval with the largest error is processed. This is similar to
what QUADPACK does except without the epsilon algorithm. During this proce-
dure, AD is temporarily switched off by making all variables passive. When the
integration procedure has converged with the desired accuracy, AD is switched
on and the integral is computed once more with an optimal set of subintervals.
Note that the optimal set of subintervals satisfies the error tolerances of the orig-
inal integral, not necessarily the integral over the derivative of the integrand.
One might suppose then that the procedure needs to be performed separately for
each parameter, presumably using the forward mode of AD, yielding a unique

15

https://github.com/raullaasner/gadfit/issues

set of subintervals for each parameter. Strictly speaking though, the derivative
is required for the approximation

F (p) =
∫ B

A

f(p, x) dx ≈
∑

j

bj − aj

2
∑

i

wi,jf

(
p,

bj − aj

2 ξi,j + aj + bj

2

)
,

(35)
where aj and bj are the bounds of each subinterval, wi,j are the Gauss-Kronrod
weights, and ξi,j are the roots of the Legendre polynomials. Here, for brevity,
p includes both the fitting parameters and optionally the independent variables
[xi in Eq. (1)]. Since it is Eq. (35) that is the fitting function (or part of it)
and not the exact integral, differentiation should be performed using the same
approximate form instead of finding a more accurate approximation for the
integral over the derivative of f by using a different set of subintervals.

The dependence on one or more fitting parameters can be in the integrand
and/or one or both bounds. The general formula for the gradient is

∇p

∫ b(p)

a(p)
f(p, x) dx

= f(p, b(p))∇pb(p) − f(p, a(p))∇pa(p) +
∫ b(p)

a(p)
∇pf(p, x) dx, (36)

where p is the fitting parameter vector.
The general formula for the second derivative, required for the acceleration

term, is

∇2
p

∫ b(p)

a(p)
f(p, x) dx = f(p, b(p))∇2

pb(p) − f(p, a(p))∇2
pa(p)

+
[
∇pf(p, b(p)) + ∇χf(χ, b(p))|χ=p

]
∇pb(p)

−
[
∇pf(p, a(p)) + ∇χf(χ, a(p))|χ=p

]
∇pa(p) +

∫ b(p)

a(p)
∇2

pf(p, x) dx, (37)

The above scheme could be generalized to any order, but it is probably not
worth going deeper than double integrals since each integration level greatly
reduces accuracy. Even nested double integrals should be avoided if possible.

We also support direct double integrals with the 2D quadrature given as

F (p) =
∫ y2(p)

y1(p)

∫ x2(p)

x1(p)
f(p, x, y) dx dy

≈
∑

j

x2j − x1j

2
y2j − y1j

2
∑

i

w2D
i,j

× f

(
p,

x2j − x1j

2 ξi,j + x2j + x1j

2 ,
y2j − y1j

2 ξi,j + y2j + y1j

2

)
, (38)

16

where w2D
i,j are products of the 1D weights. The general formula for the gradient

is

∇p

∫ y2(p)

y1(p)

∫ x2(p)

x1(p)
f(p, x, y) dx dy

= [∇py2(p)]
∫ x2(p)

x1(p)
f(p, x, y2(p)) dx − [∇py1(p)]

∫ x2(p)

x1(p)
f(p, x, y1(p)) dx

+ [∇px2(p)]
∫ y2(p)

y1(p)
f(p, x2(p), y) dy − [∇px1(p)]

∫ y2(p)

y1(p)
f(p, x1(p), y) dy

+
∫ y2(p)

y1(p)

∫ x2(p)

x1(p)
∇pf(p, x, y) dx dy.

(39)

The general formula for the second derivative is

∇2
p

∫ y2(p)

y1(p)

∫ x2(p)

x1(p)
f(p, x, y) dx dy =ξY 2 − ξY 1 + ξX2 − ξX1

+
∫ y2(p)

y1(p)

∫ x2(p)

x1(p)
∇2

pf(p, x, y) dx dy,

(40)

17

where

ξY 1 =
[
∇2

py1(p)
] ∫ x2(p)

x1(p)
f(p, x, y1(p)) dx + [∇py1(p)]

×
[

[∇px2(p)] f(p, x2(p), y1(p)) − [∇px1(p)] f(p, x1(p), y1(p))

+
∫ x2(p)

x1(p)
∇χf(χ, x, y1(p))|χ=p dx +

∫ x2(p)

x1(p)
∇pf(p, x, y1(p)) dx

]
,

ξY 2 =
[
∇2

py2(p)
] ∫ x2(p)

x1(p)
f(p, x, y2(p)) dx + [∇py2(p)]

×
[

[∇px2(p)] f(p, x2(p), y2(p)) − [∇px1(p)] f(p, x1(p), y2(p))

+
∫ x2(p)

x1(p)
∇χf(χ, x, y2(p))|χ=p dx +

∫ x2(p)

x1(p)
∇pf(p, x, y2(p)) dx

]
,

ξX1 =
[
∇2

px1(p)
] ∫ y2(p)

y1(p)
f(p, x1(p), y) dy + [∇px1(p)]

×
[

[∇py2(p)] f(p, x1(p), y2(p)) − [∇py1(p)] f(p, x1(p), y1(p))

+
∫ y2(p)

y1(p)
∇χf(χ, x1(p), y)|χ=p dy +

∫ y2(p)

y1(p)
∇pf(p, x1(p), y) dy

]
,

ξX2 =
[
∇2

px2(p)
] ∫ y2(p)

y1(p)
f(p, x2(p), y) dy + [∇px2(p)]

×
[

[∇py2(p)] f(p, x2(p), y2(p)) − [∇py1(p)] f(p, x2(p), y1(p))

+
∫ y2(p)

y1(p)
∇χf(χ, x2(p), y)|χ=p dy +

∫ y2(p)

y1(p)
∇pf(p, x2(p), y) dy

]
.

(41)

3 Building and linking
GADfit is a library, i.e., not a standalone program, written in two different
compiled languages. It started out as a Fortran implementation and was later
duplicated in C++. The Fortran development has largely stopped and only the
C++ implementation sees progress these days. What this means is that the
user is expected to have at least basic knowledge of C++ or Fortran. Specif-
ically, the fitting functions and the driver code would need to be written in
C++/Fortran. The structure of the code is such that it is currently not possi-
ble to easily interface it with other languages. The C++/Fortran requirement
might seem inconvenient for the user, but it allows to make full use of a powerful
programming language for writing functions of arbitrary complexity, which is
the primary benefit of using AD.

18

3.1 Building process
GADfit is dependent on the CMake build system generator. CMake is a set of
tools for configuring, building, and testing software. It is released under the
New BSD License and can be installed by issuing

sudo apt-get install cmake

(Here and elsewhere, we demonstrate how to obtain the relevant packages on
Ubuntu; advanced users can skip this section.) For building from source visit
http://cmake.org. GADfit is developed with the requirement that it should
work with the GNU compilers. In principle, any C++ 20 or Fortran 2008
conforming compiler should also work.

The overall build process is similar for the C++ and Fortran versions, al-
though they do have different prerequisites (see Secs. 3.1.1 and 3.1.2 for details).
Here we lay out instructions that apply for both.

Steps for configuring and building GADfit are the following. Untar the
source code and navigate into the build directory (~build)

tar xf gadfit.tar.gz
mkdir build && cd build

One can also build in the source directory (~gadfit) but it is generally a good
habit to do out-of-source builds or at least create a separate build directory
within the source directory.

For configuring, you can use either a graphical CMake front end, a text file
containing the configuration variables, or specify the build environment from
the command line (cmake <options> ...). The two commonly used graph-
ical front ends are the command line based ccmake, obtained by installing
cmake-curses-gui, and the Qt-based cmake-gui, obtained by installing
cmake-qt-gui. When using ccmake, issue

cmake ~gadfit
ccmake .

from the build directory. Some CMake variables and options appear, most of
which should be self-explanatory. A short help text to each variable is displayed
at the bottom in a status bar. Pressing ’t’ reveals all options. When done
editing, press ’c’ to reconfigure and ’g’ to generate the native build script (the
unix makefile on Linux). Pay attention when ccmake warns you that the cache
variables have been reset. This will happen, e.g., when changing the compiler,
and will necessitate the reconfiguring of some variables. After configuring, it is
a good idea to go through all the variables once more to check that everything is
correct (see Sec. 3.1.3 for configuration variables). When finished, exit ccmake
and issue

cmake --build .
cmake --build . --target test
cmake --build . --target install

19

http://cmake.org

The default build system generated by CMake is GNU makefiles on Linux. A
different build system can be chosen by passing an argument to the CMake
generator function. For instance, for using Ninja, use -G Ninja during the
initial configuring,

cmake -G Ninja ~gadfit

In order to use cmake-gui instead of ccmake, start with

cmake ~gadfit
cmake-gui .

The rest is analogous.
The CMake configuration variables can also be put into an external file, an

example of which is initial_cache.cmake.example in the root directory of
GADfit. It can be used as follows:

cp initial_cache.cmake.example initial_cache.cmake
Edit initial_cache.cmake to reflect your environment
cmake -C ~gadfit/initial_cache.cmake ~gadfit

from the build directory, followed by the build commands. A change of the
content of the configuration file has no effect after the first configuring. Instead,
it would be necessary to empty ~build before using the configuration file again
or, better, use ccmake.

3.1.1 C++ prerequisites

• A C++ compiler. The GNU C++ compiler (g++) is usually pre-installed
on a Linux distribution. If not, visit gcc.gnu.org to build and install one
manually.

• spdlog, which is a C++ logger. Install it either manually, using your
distribution’s package manager, or do nothing in which case the build
system downloads and builds is automatically.

3.1.2 Fortran prerequisites

• A Fortran compiler GFortran, released under the GPL 3+ license, can be
obtained with

sudo apt-get install gfortran

or one could build from source by visiting

http://gcc.gnu.org/wiki/GFortran.

20

gcc.gnu.org

3.1.3 CMake configuration variables

See initial_cache.cmake.example in the root directory for a list of configu-
ration variables. You can copy and work with that file directly. There is thus
no need to list them separately here. We only mention the most imporant one
here, BUILD_CXX_VERSION, which determines whether the C++ version or the
Fortran version of GADfit is built. Default is to build the C++ version.

3.2 Runtime linking
This section demonstrates how to compile and run a C++/Fortran program with
calls to GADfit. Assuming we have successfully compiled GADfit as a shared
library and created an input file main.cpp/main.f90, the following steps, if
executed from the working directory, should successfully compile and execute.
How to write an input file is explained in Sec. 4.2.

Note that you are free to use a different build system or build system gen-
erator, write your own makefile, or issue everything from the command line.
However, those approaches tend to be more system specific. Here we are only
focusing on how to include GADfit in CMake projects.

3.2.1 C++

Create a file called CMakeLists.txt with the following contents:

cmake_minimum_required(VERSION 3.13)
project(run LANGUAGES CXX)
add_executable(main main.cpp)
If spdlog is installed to a non-standard location, specify it
here. If installed to a standard system location or not
installed at all, no need to do anything here.
set(spdlog_dir /usr/local/spdlog)
find_package(spdlog QUIET HINTS ${spdlog_dir})
Directory where GADfit is installed. Can also point to the
build directory.
set(gadfit_dir /usr/local/gadfit)
find_package(gadfit HINTS ${gadfit_dir})
target_link_libraries(main PUBLIC gadfit::gadfit)

Edit this file to reflect your environment. Next, create a build directory, config-
ure and compile:

mkdir build && cd build
cmake ..
cmake --build .

The executable is produced in the same directory so you can run it with

export OMP_NUM_THREADS=8
./main

21

If the C++ compiler does not have OpenMP support the export statement has
no effect.

3.2.2 Fortran

Create a file called CMakeLists.txt with the following contents:

cmake_minimum_required(VERSION 3.13)
project(run LANGUAGES Fortran)
add_executable(main main.F90)
Directory where GADfit is installed. Can also point to the
build directory.
set(gadfit_dir /usr/local/gadfit)
find_package(gadfit HINTS ${gadfit_dir})
Uncomment the MKL libraries or specify your own
target_link_libraries(main PUBLIC

gadfit::gadfit
/opt/intel/mkl/lib/intel64/libmkl_intel_lp64.so
/opt/intel/mkl/lib/intel64/libmkl_sequential.so
/opt/intel/mkl/lib/intel64/libmkl_core.so
)

Edit this file to reflect your environment. Next, create a build directory, config-
ure and compile:

mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake -DCMAKE_Fortran_FLAGS_RELEASE="-fcoarray=lib" ..
cmake ..
cmake --build .

If GADfit was compiled with multi-image support, uncomment the two lines
above. The executable is produced in the same directory so you can run it with

./main

or

mpirun -np 2 main

for the multi-image version.
For legacy reasons, we also include here a shell script for compiling and

running a Fortran program with calls to GADfit.

#!/bin/bash

GAD=/usr/local/gadfit

GNU

22

FC=mpif90
FFLAGS="-J$GAD/include -L$GAD/lib"
LIBS="$LIBS /usr/local/opencoarrays/lib/libcaf_mpi.a"
Intel
#FC=ifort
#FFLAGS="-coarray=shared -I$GAD/include -L$GAD/lib"

Lapack
LIBS="$LIBS -llapack"

Atlas
#FFLAGS="$FFLAGS -L/usr/local/atlas/lib"
#LIBS="$LIBS -ltatlas"

MKL (for Intel and GNU compilers)
#MKLROOT=/opt/intel/mkl
#FFLAGS="$FFLAGS -L$MKLROOT/lib/intel64"
#export LD_LIBRARY_PATH=$MKLROOT/lib/intel64:$LD_LIBRARY_PATH
#LIBS="$LIBS -lmkl_intel_lp64 -lmkl_sequential -lmkl_core"
#LIBS="$LIBS -lmkl_gf_lp64 -lmkl_sequential -lmkl_core -lpthread"

export LD_LIBRARY_PATH=$GAD/lib:$LD_LIBRARY_PATH
$FC $FFLAGS main.f90 -o main -lgadfit $LIBS && \
mpirun -np 4 ./main # GNU
#./main # Intel

This may need to be modified to reflect the user’s environment. If libcaf_mpi.a
was built automatically (see Sec. 4.1.2), then its location is
~gadfit/fortran/tests. If GADfit was built in serial, libcaf_mpi.a need not
be linked.

3.3 Notes on using GADfit in other CMake projects
If you have built and installed GADfit and want to use it in a CMake project,
only two CMake statements are necessary as demonstrated in the above exam-
ples. Assuming that GADfit has been installed at a standard system location
and the target name you want to link against GADfit is myproject, include the
lines

find_package(gadfit)
target_link_libraries(myproject PRIVATE gadfit::gadfit)

in that project. If GADfit is not installed in a standard location, use the PATHS
or HINTS argument to find_package, e.g.,

find_package(gadfit PATHS $ENV{HOME}/libs/gadfit)

Additionally, if you need to ensure that GADfit is not older than a specific
version, use

23

find_package(gadfit 2.7 PATHS $ENV{HOME}/libs/gadfit)

In this example, if the version of the installed copy is less than 2.7, CMake will
exit with an error. Any version equal to or greater than 2.7 is fine. In order to
see all the options of find_package, run

cmake --help find_package

or consult the online documentation.
If you want to link against GADfit without installing it first, the PATHS

argument can point directly to the GADfit build directory:

find_package(gadfit PATHS $ENV{HOME}/builds/gadfit)

This is useful for developers.

4 Usage
4.1 Parallelism
4.1.1 C++

The C++ implementation of GADfit is thread-safe and is parallelized using
OpenMP. That means you can speed up a single instance of the solver and/or
call the solver from multiple threads in an OpenMP parallel region. The number
of threads working on a single instance are set by a user parameter
(LMsolver::settings::n_threads) which defaults to 1. Regardless of the
OMP_NUM_THREADS environment variable or a call to omp_set_num_threads, the
fitting procedure still runs on a single thread unless the parameter is set.

Under normal usage no OpenMP directives or functions need to be explicitly
called. However, when calling some of the lower levels functions directly, such as
allocating the AD tape variables, they need to be accompanied by the OpenMP
parallel directive. If unsure have a look at the tests or the source code to see
how certain GADfit functions must be called.

4.1.2 Fortran

The Fortran version of GADfit is parallelized using Coarrays, a syntactic exten-
sion to the language that was included in the Fortran 2008 standard. Coarrays
follow the SPMD parallelization scheme, where the main program is replicated
at the start of execution. Each instance, called an image, has its own set of
private variables plus so-called co-variables that are addressable by other im-
ages. Coarrays allow to parallelize programs with little effort compared to MPI
or OpenMP, although it is often either MPI or OpenMP that runs under the
hood.

In order to compile a Coarray program with GFortran, the compiler flag
-fcoarray=lib must be used. For GFortran, the Coarray support is provided by
the OpenCoarrays project. It can be automatically downloaded and built with

24

cmake --build . --target example or cmake --build . --target test. The
Coarray communication library, libcaf_mpi.a, is installed in
~gadfit/fortran/tests. Alternatively, one may issue, e.g.,

wget https://github.com/sourceryinstitute/OpenCoarrays/\
releases/download/2.10.0/OpenCoarrays-2.10.0.tar.gz
tar xf OpenCoarrays-2.10.0.tar.gz
mkdir OpenCoarrays-2.10.0/build && cd OpenCoarrays-2.10.0/build
cmake ..
make -j # libcaf_mpi.a is in lib

and set the OPEN_COARRAYS variable in the GADfit configuration to the full
path of libcaf_mpi.a. If using the Intel compiler, there is no such external
dependency.

4.2 Example input
Suppose we have made two measurements of a decay process, which are to be
fitted against

I(t) = I0e−t/τ + bgr. (42)

The decay curves correspond to the same physical phenomenon, meaning they
share the same decay time τ , but have been performed in slightly different
experimental conditions with different initial amplitudes I0 and backgrounds
bgr. To get the best estimate for the fitting parameters, the curves should be
fitted simultaneously with τ as a global fitting parameter and I01, I02, bgr1, and
bgr2 as local parameters.

4.2.1 C++

An input file example.cpp that solves the nonlinear least squares problem is
found in ~gadfit/c++/tests. Run it by invoking

cmake --build . --target example

4.2.2 Fortran

An input file example.F90 that solves the nonlinear least squares problem is
found in ~gadfit/fortran/tests. Run it by invoking

cmake --build . --target example

The data files example_data1 and example_data2 are required to contain at
least two columns (the rest are ignored). Any line beginning with a non-number
is treated as a comment. In the following, we have chosen to put the fitting
function into a Fortran module, followed by the main program which contains
a small set of commands to perform the fitting procedure. Users with more
knowledge of Fortran may wish to do it differently. We shall first describe how
to build the fitting function.

25

4.3 Defining the fitting function
4.3.1 C++

Here is the translation of the fitting function defined by Eq. (42):

static auto exponential(
const std::vector<gadfit::AdVar>& parameters,
const double x) -> gadfit::AdVar

{
return parameters[0] * exp(-x / parameters[1])

+ parameters[2];
}

It takes a parameter vector and an argument at which to evaluate the function.
Definition of the function body is very simple. It reads just like a normal
statement using floating point variables, except that parameters is a vector of
AD variables. One may also use aliases for the parameter names to make it a
bit more readable (see example.cpp).

4.3.2 Fortran

In the Fortran version, all user defined functions are derived from an abstract
type fitfunc (making them derived classes in OOP terms). Two procedures
must always be defined: a constructor, which specifies the number of fitting
parameters, and the function body. While the user is advised to work through
a full Fortran tutorial, in the following some effort has been made to explain
the peculiarities of the language.

module test_f
! This module defines the function I(x) = I0*exp(-t/tau)+bgr.
! In Fortran, comments begin with an "!".

use ad ! Imports the module containing the procedures for AD.
! Similar to the preprocessor #include directive.

use fitfunction ! Imports the abstract class for the fitting
! function.

use gadf_constants ! Imports the floating point precision
! specifier (kp).

implicit none ! This should be present in all modules.

! We have decided to call the type of the new fitting function
! ’exponential’. init and eval are the constructor and the
! function body, which must be renamed and implemented below.
type, extends(fitfunc) :: exponential
contains

procedure :: init => init_exponential

26

procedure :: eval => eval_exponential
end type exponential

contains
! The interfaces of the following procedures, i.e., the type of
! the arguments and of the return value, are fixed.
subroutine init_exponential(this)

class(exponential), intent(out) :: this
! Allocate memory to the fitting parameter array.
allocate(this%pars(3))
! In C++, this would be something like
! this->pars = new advar[3];

end subroutine init_exponential

type(advar) function eval_exponential(this, x) result(y)
class(exponential), intent(in) :: this
real(kp), intent(in) :: x
y = this%pars(1)*exp(-x/this%pars(2)) + this%pars(3)
! In this context, I0 = this%pars(1), tau = this%pars(2), and
! bgr = this%pars(3).

end function eval_exponential
end module test_f

This might seem complicated at first, but have a look at
~gadfit/fortran/tests/function_template, which is a stripped-down ver-
sion of the above. The angle-bracketed words need to be replaced by user-
defined values and the only effort lies in the description of the function body.
In order to test whether the function has been correctly defined, one can use
the same code as in the next section, but comment out the call to gadf_fit. If
there are no data sets, then gadf_print must be explicitly supplied with the
arguments begin and end, which define the argument range.

The above is a very simple example highlighting only some of the function-
ality. For more complex examples, see the tests in ~gadfit/fortran/tests.

As a comment, we have used the module approach because the user might
wish in the future to put the most commonly used fitting functions into a single
module that can then be conveniently included, e.g., as a library in any source
file. This is just a suggestion.

4.4 Fitting procedure
4.4.1 C++

First, initialize the Levenberg-Marquardt solver,

gadfit::LMsolver solver { f };

where f is any function with the correct signature, e.g. exponential from
Sec. 4.3.1. Next, add any number of data sets,

27

solver.addDataset(x_data_1, y_data_1);
solver.addDataset(x_data_2, y_data_2);

If you look into lm_solver_data.h you’ll see that the input data are of type
std::array. Internally the data are captured by std::span which is a view of
the data and thus avoids a copy. The data could also be of type std::vector
or anything that is compatible with std::span. It is up to you to ensure that
the data doesn’t go out of scope before the solver is run. Then set the initial
values of all fitting parameters. In this example, all starting values are set to
1.0.

solver.setPar(0, 1.0, true, 0); // I0 of curve 1
solver.setPar(2, 1.0, true, 0); // bgr of curve 1
solver.setPar(0, 1.0, true, 1); // I0 of curve 2
solver.setPar(2, 1.0, true, 1); // bgr of curve 2
solver.setPar(1, 1.0, true); // tau

Here the numeration of parameters is 0: I0, 1: τ , 2: bgr. This is determined by
how the body of the fitting function is defined (see Sec. 4.3.1). Finally, call the
fitting procedure:

solver.fit();

4.4.2 Fortran

Here are the commands necessary to run the example. For a complete overview
of input variables, see Sec. 4.5.2.

use test_f ! Include the above-defined fitting function
use gadfit ! and the main library.

implicit none

type(exponential) :: f ! An instance of the fitting function

! Initialize GADfit with the fitting function and the number of
! data sets.
call gadf_init(f, 2)

! Include both decay curves. The argument must be full or
! relative path to the data. TESTS_BLD is expanded by the
! preprocessor to ~build/fortran/tests.
call gadf_add_dataset(TESTS_BLD//’/example_data1’)
call gadf_add_dataset(TESTS_BLD//’/example_data2’)

! The initial guess for all fitting parameters is 1.0. The
! first argument denotes the data set, the second argument the
! parameter, third argument its value, and fourth whether the

28

! parameter is allowed to vary or is kept fixed.
call gadf_set(1, 1, 1.0, .true.) ! I01
call gadf_set(2, 1, 1.0, .true.) ! I02
call gadf_set(1, 3, 1.0, .true.) ! bgr1
call gadf_set(2, 3, 1.0, .true.) ! bgr2
! Global parameters don’t have the data set argument.
call gadf_set(2, 1.0, .true.) ! tau

! The uncertainties of the data points determine their
! weighting in the fitting procedure. Here we are assuming shot
! noise, i.e., the error of each data point is proportional to
! the square root of its value. Default is no weighting.
call gadf_set_errors(SQRT_Y)

! Perform the fitting procedure starting with lambda=10. If the
! procedure doesn’t converge, we should restart with a higher
! value or modify any of the other arguments to gadf_fit. All
! the arguments are optional with reasonable default values.
call gadf_fit(lambda=10.0)

! The results are saved into ~gadfit/fortran/tests
call gadf_print(output=TESTS_BLD//’/example_results’)
call gadf_close() ! Free memory

end program

In order to run the above code, one can manually link and compile from the
command line, use a small script like in Sec. 3.2, or simply issue

cmake --build . --target example

from the build directory. If no linear algebra library has been specified, it will
take a moment to build one.

The results of the calculation will be printed to the standard output and also
to ~build/fortran/tests/example_results_parameters. The decay time
should have the value of about 20.5. If the errors are the true experimen-
tal uncertainties, then for a good fit the reduced sum of squares should be
close to 1. The results can be visualized by opening gnuplot in the directory
~build/fortran/tests and issuing

p ’example_data1’ t ’data1’, ’example_data2’ t ’data2’, \
’example_results’ u 1:2 w l t ’fit1’, ’’ u 1:3 w l t ’fit2’

The rest of the examples in ~gadfit/fortran/tests can be built and run with

cmake --build . --target test

29

The fitting functions used in the tests are

f1(x) =fmaxe−(x−x0)2/a2
+ bgr,

f2(x) =π

∫ x

0
tae−bt2

dt,

f(x) =
∫ ∞

0
dt

∫ x/b

0
dy

ln[(ey − 1)(1 + ab erf t) + 1]
xy

e−t,

where erf is the error function.

4.5 User interface
4.5.1 C++

You will mainly be interacting with the gadfit::LMsolver class. Here is an
overview of the most important member functions and variables. Several of
the functions and variables come with default values. Those are easily found
in the source code (c++/gadfit/lm_solver.h) and not duplicated here. The
following functions and variables should be called on an LMsolver instance (i.e.
not directly like static functions and variables).

gadfit::LMsolver::LMsolver(const fitSignature& function_body)

• function_body: the function body. See Sec. 4.3.1 for how to define one.

gadfit::LMsolver::addDataset(const T& x_data,
const T& y_data,
const T& errors = {})

Add a dataset. The type T needs to be compatible with std::span, e.g.
std::vector<double>.

• x_data: array of independent variables of a data set.

• y_data: array of dependent variables of a data set.

• errors: if present, data point errors (standard deviations). Default is to
set all errors equal to 1, i.e. all data points have the same weight.

gadfit::LMsolver::addDataset(const int n_datapoints,
const double* x_data,
const double* y_data,
const double* errors = nullptr)

A low level version of addDataset that deals directly with pointers. Use this
if pointing to a segment of an array or when the template type T above is
incompatible with std::span.

• x_data: shared pointer of an array of independent variables of a data set.

30

• y_data: shared pointer of an array of dependent variables of a data set.

• errors: if present, defines a shared pointer of data point errors. Default
is to set all errors equal to 1, i.e. all data points have the same weight.

gadfit::LMsolver::setPar(
const int i_par,
const double val,
const bool active = false,
const int i_dataset = global_dataset_idx,
const std::string& parameter_name = "")

Set fitting parameters.

• i_par: an index of the parameter array as defined in the fitting function.

• val: initial value of a fitting parameter.

• active: whether this is an active or a passive (constant) fitting parameter.

• i_dataset: if present, specifies a data set. If not present, defines a global
fitting parameter.

• parameter_name: if present, displays the parameter name during fitting
procedure. Default is to display the parameter index.

gadfit::LMsolver::setPar(const int i_par,
const double val,
const bool active,
const std::string& parameter_name)

Call this for setting a global parameter with a name. Otherwise it is the same
as the other setPar.

gadfit::LMsolver::settings

A struct containing parameters that define runtime behavior. Find the default
values in c++/gadfit/lm_solver.h.

• iteration_limit (int): iteration limit.

• lambda_down (double): Factor by which λ is increased for accepted
steps.

• lambda_up (double): Factor by which λ is decreased for rejected steps.

• lambda_incs (int): Number of times λ is allowed to increase consecu-
tively without terminating the fitting procedure.

• damp_max (bool): Whether to update the damping matrix with the largest
entries of JT J yet encountered. If false, the classical Marquardt scheme
is used.

31

• DTD_min (std::vector<double>): Minimum initial values of the diago-
nal entries of the damping matrix. Only relevant if damp_max == true.
Length of this array must equal the number of fitting parameters.

• acceleration_threshold (double): Acceleration threshold [α in Eq. (7)].
If negative, the acceleration term is not calculated.

• loss: Type of loss function:

– linear: ρ(z) = z where z is the squared residual (default)
– cauchy: ρ(z) = ln(1 + z)
– huber: ρ(z) = z if z ≤ 1 and ρ(z) = 2(

√
z − 1) otherwise

• n_threads: Number of OpenMP threads. Default is 1.

gadfit::LMsolver::settings::verbosity

Flags for controlling output. Usage follows the standard rules of bit manipula-
tion in C++. For example, for turning on the delta1 and delta2 flags,

gadfit::LMsolver solver { f };
f.settings.verbosity = gadfit::io::delta1 | gadfit::io::delta2;

The following flags are supported.

• delta1: Show the change in parameter value after each iteration.

• delta2: Show the acceleration term of each parameter after each iteration.
Note that the actual contribution to the update vector is − 1

2δ2. Only
shown if acceleration_threshold is also set.

• timings: Show detailed timing information for all processes.

• hide_local: Do not show local parameters during the fitting procedure.

• hide_global: Do not show global parameters during the fitting proce-
dure.

• hide_all: Do not show anything.

• final_only: Only show results after the final iteration.

• all: Turn on all flags.

gadfit::LMsolver::fit(double lambda = default_lambda)

Performs the fitting procedure.

• lambda: the adaptive damping parameter.

gadfit::LMsolver::getParValue(const int i_par,
const int i_dataset = 0)

32

Get parameter i_par corresponding to data set i_dataset.

gadfit::LMsolver::getValue(const double arg,
const int i_dataset = 0)

Get the fitting function value at arg using parameters corresponding to data
set i_dataset.

gadfit::LMsolver::getJacobian()
gadfit::LMsolver::getJTJ()
gadfit::LMsolver::getDTD()
gadfit::LMsolver::getLeftSide()
gadfit::LMsolver::getRightSide()
gadfit::LMsolver::getResiduals()
gadfit::LMsolver::getInvJTJ()

Get J , JTJ , DTD, left side of Eq. (2), right side of Eq. (2), the residuals
y − f(β), or (JTJ)−1, respectively.

gadfit::initIntegration(const int workspace_size = 1000,
const int n_workspaces = 1)

Allocate memory for integration routines. This must be called before LMsolver::fit
if the fitting function contains integrals.

• workspace_size: number of Gauss-Kronrod sub-intervals.

• n_workspaces: number of integration levels (1 for single integrals, 2 for
double integrals).

gadfit::freeIntegration()

Deallocate integration workspaces.

spdlog::set_pattern(pattern_string)

GADfit makes of spdlog for writing output. See the spdlog project’s homepage
for full documentation. Here we only describe functions that are most relevant
to GADfit.

• pattern_string: format for writing output. For instance, if the default
output is too verbose, include something like spdlog::set_pattern("%v");
before the first call to gadfit::LMsolver::fit.

spdlog::set_level(spdlog::level)

Set global log level
• spdlog::level: logging levels.

– spdlog::level::info: normal output.
– spdlog::level::debug: more verbose output.
– spdlog::level::off: turn off all output.

33

4.5.2 Fortran

Before using GADfit, here are a some general remarks about argument process-
ing in a Fortran.

• There is no automatic argument type conversion when calling a procedure.
If the procedure expects a double precision number, then this is exactly
what the user must supply. In C terms, if the function expects a ’double’,
then a ’float’ will cause an error. While it can be compiler dependent,
numbers such as 3.2 or 5e7 are generally interpreted as single precision.
In GADfit, higher precision can be obtained by appending numbers with
the “kind parameter” (3.2_kp, 5e7_kp) in which case they become double
or quadruple precision, depending on how GADfit was configured. With
double precision, instead of _kp we can also use the d descriptor (e.g.
3.2d0).
Internally, most procedures use at least double precision. However, for
user convenience, some procedures are also available in single precision.
For example, instead of

call gadf_set(1, 3.2_kp)

we can also have

call gadf_set(1, 3.2)

Single precision is not that important when setting initial parameter val-
ues. (The decimal point or an exponent must still be present, else the
argument is interpreted as an integer.)

• Procedure arguments can be given as a value (call gadf_fit(1.0)) or
as a name-value pair (call gadf_fit(lambda=1.0)). When using the
latter option, the arguments can be given in any order. It is also useful
when calling a procedure that has many optional arguments but the user
wishes to provide only some of them.

The next section contains a detailed list of all procedures that are required
for normal use. The procedure arguments are given according to the format
<type-specifier>::<variable>, where the type-specifier can be real(kp) –
double or quad precision real number; real(real32) – single precision real
number; integer – integer; character(*) – character array (’asdf’); logical
– truth value, can be either .true. or .false.. If there is more than one allowed
type for the argument, the choices are separated by a slash. Optional arguments
have the keyword optional. All procedures are subroutines except integrate,
which is a function.

gadf_init(f, num_datasets, ad_memory, sweep_size, trace_size,
const_size, rel_error, rel_error_outer, ws_size,
ws_size_inner, integration_rule)

34

Initializes the workspace. This procedure must always be called when perform-
ing a fitting procedure.

• class(fitfunc) :: f

The fitting function. class(fitfunc) denotes a polymorphic variable. In
practice, f has an explicit type like type(exponential) in the example.

• integer, optional :: num_datasets

Number of data sets.
Default: 1.

• character(*), optional :: ad_memory

Allocates memory for the work variables of the AD reverse mode so that
forward_values and adjoints contain x, trace 4x, and ad_constants
1
2 x elements, where x is such that the total amount of memory reserved is
equal to that given by ad_memory, whose format is “number unit”, where
“unit” is B, kB, MB, or GB (also acceptable are b, kb, mb, or gb). Ex-
ample: ad_memory=’1.25 MB’. Overrides sweep_size, trace_size, and
const_size, which can be used for fine-tuning memory allocation.
Default: none.

• integer, optional :: sweep_size

Size of forward_values and adjoints.
Default: 10 000.

• integer, optional :: trace_size

Size of trace.
Default: 4 × 10 000.

• integer, optional :: const_size

Size of ad_constants.
Default: 1

2 × 10 000.

• real(kp), optional :: rel_error

Tolerance for the relative error of numerical integration. When dealing
with double integrals, this applies to the outer integral.
Default (single integrals): 100 × machine epsilon or
Default (double integrals): 1000 × machine epsilon

• real(kp), optional :: rel_error_inner

Tolerance for the relative error of the inner integral.
Default: 100 × machine epsilon.

35

• integer, optional :: ws_size

Size of the integration workspace. With double integrals this refers to the
outer integral. It is assumed that there are at most this many integration
subintervals.
Default: 1000.

• integer, optional :: ws_size_inner

Size of the integration workspace for the inner integral when using double
integrals.
Default: 1000.

• integer, optional :: integration_rule

Sets the Gauss-Kronrod integration rule. Allowed values are
GAUSS_KRONROD_15P, GAUSS_KRONROD_21P, GAUSS_KRONROD_31P,
GAUSS_KRONROD_41P, GAUSS_KRONROD_51P, and GAUSS_KRONROD_61P.
Default: GAUSS_KRONROD_15P.

gadf_add_dataset(path)

Reads a data set. This procedure must be called as many times as there are
data sets, which is determined by the num_datasets argument to gadf_init.

• character(*) :: path

Full or relative path to the data file.

gadf_add_dataset(x_data, y_data, weights)

Reads a data set. This procedure must be called as many times as there are
data sets, which is determined by the num_datasets argument to gadf_init.

• real(kp) :: x_data(:)

Array containing the x-values (data point coordinates).

• real(kp) :: y_data(:)

Array containing the y-values (data point values).

• real(kp), optional :: weights(:)

Array containig the data point weights. Only used with the USER argument
to gadf_set_errors (see below).

gadf_set(dataset_i, par, value, active)

Defines the parameter as local, sets its value, and marks it either active or
passive.

• integer :: dataset_i

The data set index.

36

• integer/character(*) :: par

Either the parameter index or its name.

• real(real32)/real(kp) :: val

Parameter value in either single or higher precision.

• logical, optional :: active

If .true. the parameter is active, else passive. In the current implemen-
tation, if a parameter is local it is either active or passive for all data
sets.
Default: .false..

gadf_set(par, value, active)

Similar to the other gadf_set except that this one defines either a global fitting
parameter or a global constant. If only one data set is used, it doesn’t matter
which procedure is used.

gadf_set_verbosity(scope, digits, timing, memory, workloads,
delta1, delta2, cos_phi, grad_chi2, uphill,
acc, output)

Gives the user some control over how the results are displayed. All flags can be
set to .true.. For instance, one might wish know | cos ϕ| of Eq. (20) but not
used it as a convergence criterion.

• integer, optional :: scope

Whether to show only local or global parameters or both during the fitting
procedure. Allowed values are GLOBAL, LOCAL, and GLOBAL_AND_LOCAL.
Default: GLOBAL_AND_LOCAL.

• integer, optional :: digits

How many significant digits of the fitting parameters are shown during
the fitting procedure.
Default: 7.

• logical, optional :: timing

Whether to show the timing summary after the fitting procedure. The
cpu and wall times are measured for J , χ2, Ω, and simple linear algebra
operations (JT , JTJ , JT (y − f), . . .). The cost of calculating J also
includes the residual vector y−f , which is produced as part of the forward
sweep. All other parts of the fitting procedure are serial. Since the serial
portion of the code is negligible, all images should in principle do the same
amount of work. The timing summary thus contains information about
the load imbalance. It contains the following parts:

37

– The cpu times per call are averaged over images and over the number
of calls to the procedure.

– The relative cost is the cpu time averaged over images and divided
by the total cpu time spent in the main loop. With perfect scaling
the relative costs should add up to 100%.

– Detailed timing is shown for J , χ2, and Ω. The reported total cpu
and wall times are over all serial and parallel parts of the main loop,
and do not correspond exactly to the sum of the shown quantities.

Default: .false..

• logical, optional :: memory

Whether to show memory usage after the fitting procedure. Only the peak
usage is shown, which is not necessarily representative of the actual load.
Default: .false..

• logical, optional :: workloads

Whether to show the workload of each image. If the loads are very uneven,
it is worth considering using load balancing.
Default: .false..

• logical, optional :: delta1

Whether to show δ1, the velocity term.
Default: .false..

• logical, optional :: delta2

Whether to show δ2, the acceleration term.
Default: .false..

• logical, optional :: cos_phi

Whether to show | cos ϕ| [Eq. (20)].
Default: .false..

• logical, optional :: grad_chi2

Whether to show |∇χ2| = |2JT (y − f)|.
Default: .false..

• logical, optional :: uphill

Whether to show cos(δi, δi−1) [Eq. (8)].
Default: .false..

38

• logical, optional :: acc

Whether to show the ratio of the contributions from the velocity and the
acceleration terms [Eq. (7)].
Default: .false..

• character(*), optional :: output

Where to send the output. Can be a file or, in general, any I/O device.
On Linux, using ’/dev/null’ suppresses all output except errors and
warnings, which are sent to stderr.
Default: stdout (standard output).

gadf_set_errors(e)

Specifies the data point errors – σi in Eq. (3). If this procedure is not called,
the errors are set to 1.

• integer, optional :: e

Allowed values are NONE – σi = 1 (the default); SQRT_Y – σi = √
yi (shot

noise); PROPTO_Y – σi = yi; INVERSE_Y – σi = 1/yi; USER – user defined
uncertainties, must be supplied as the 3rd column in the data files or as a
separate array.

gadf_fit(lambda, lam_up, lam_down, accth, grad_chi2, cos_phi,
rel_error, rel_error_global, chi2_rel, chi2_abs,
lam_incs, uphill, max_iter, damp_max, nielsen, umnigh,
load_balancing, use_ad)

Performs the fitting procedure. The procedure stops if any of the convergence
criteria is satisfied.

• real(real32), optional :: lambda

The adaptive damping parameter.
Default: 1.

• real(real32), optional :: lam_up

Factor by which λ is increased for accepted steps.
Default: 10.

• real(real32), optional :: lam_down

Factor by which λ is decreased for rejected steps.
Default: 10.

• real(real32), optional :: accth

Acceleration threshold [α in Eq. (7)]. If zero, the acceleration term is not
calculated.
Default: 0.

39

• real(real32), optional :: grad_chi2

Tolerance for |∇χ2| = |2JT (y − f)|.
Default: 0.

• real(real32), optional :: cos_phi

Tolerance for the cosine of the angle between the residual vector and the
range of the Jacobian [Eq. (20)].
Default: 0.

• real(real32), optional :: rel_error

Tolerance for the relative change in any fitting parameter for two consec-
utive iterations.
Default: 0.

• real(real32), optional :: rel_error_global

Same as rel_error but applies only to global parameters.
Default: 0.

• real(real32), optional :: chi2_rel

Tolerance for the relative change in χ2 for two consecutive iterations.
Default: 0.

• real(real32), optional :: chi2_abs

Tolerance for the reduced sum of squares.
Default: 0.

• real(kp), optional :: DTD_min(:)

Minimum values of the diagonal entries of the damping matrix.
Default: 0.

• integer, optional :: lam_incs

Number of times λ is allowed to increase consecutively without terminating
the fitting procedure.
Default: 2.

• integer, optional :: uphill

The exponent b in Eq. (8). If zero, uphill steps are not allowed.
Default: 0.

• integer, optional :: max_iter

Iteration limit.
Default: unlimited.

40

• logical, optional :: damp_max

Whether to update the damping matrix with the largest entries of JT J
yet encountered. If .false., the classical Marquardt scheme is used.
Default: .true..

• logical, optional :: nielsen

Whether to update λ with max[1/λ↓, 1 − (2ρ − 1)3]. See the paragraph on
updating λ in Sec. 2.1. ρ includes only the velocity term.
Default: .false..

• logical, optional :: umnigh

Whether to update λ according to Umrigar and Nightingale.
Default: .false..

• logical, optional :: load_balancing

Whether to use load balancing. If .true., the input data is redistributed
among the images in an effort to achieve equal workloads. The redistri-
bution is based on the workloads of the previous iteration and is repeated
after each iteration. Load balancing makes sense with integrals and other
constructs whose cost heavily depends on the argument.
Default: .false..

• logical, optional :: use_ad

Whether to use automatic differentiation for the computation of the Ja-
cobian (both the velocity and acceleration terms). If false, use finite dif-
ferences.
Default: .true..

gadf_print(begin, end, points, output, grouped, logplot,
begin_kp, end_kp)

Prints the results to an I/O device. The results include the theoretical curve(s),
fitting parameter values, and summary of resources used. If no fitting procedure
has been performed, only the theoretical curve is printed.

• real(real32), optional :: begin

The lower bound for the x-values.
Default: taken from the input data.

• real(real32), optional :: end

The upper bound for the x-values.
Default: taken from the input data.

41

• integer, optional :: points

Number of points printed per curve.
Default: 200.

• character(*), optional :: output

Output file root name.
Default: ’out’.

• logical, optional :: grouped

Whether to group all curves into a single file.
Default: .true..

• logical, optional :: logplot

Whether to produce results suitable for a (log x, y)-plot.
Default: .false..

• real(kp), optional :: begin_kp

Same as begin but with double/quad precision; overrides begin.
Default: none.

• real(kp), optional :: end_kp

Same as end but with double/quad precision; overrides end.
Default: none.

gadf_close()

Frees all work variables. After this, it is safe to call gadf_init again.

integrate(f, pars, lower, upper, rel_error, abs_error)

Performs numerical integration. Can be used as part of a fitting function. The
result is of type advar.

• type(advar) function f(x, pars)
real(kp), intent(in) :: x
type(advar), intent(in out) :: pars(:)

end function f

The integrand.

• type(advar) :: pars(:)

Parameters passed to the integrand.

• type(advar)/real(kp)/integer :: lower

Lower integration bound. Can be an active/passive fitting parameter, a
real number, -INFINITY, or INFINITY.

42

• type(advar)/real(kp)/integer :: upper

Upper integration bound. Same comments as with lower.

• real(kp), optional :: relative_error

Tolerance for the relative error of the integral. Overrides gadf_init.
Default: whatever was specified with gadf_init or 100 (1000) × machine
epsilon for the inner (outer) integral.

• real(kp), optional :: absolute_error

Tolerance for the absolute error.
Default: 0.

4.6 Internals
4.6.1 Fortran

The previous sections were about the main commands that would normally be
used. This section describes more advanced usage of GADfit for experimental,
debugging, or other purposes. Some knowledge of Fortran is assumed.

Basic usage of the fitfunc class. As was mentioned earlier, the user can
test the fitting function by calling gadf_print without performing a fitting
procedure. It is, however, possible to work directly with the fitting function,
which inherits from the fitfunc class. The following code snippet prints the
value of a function with the argument 2.0. It is assumed that GADfit has been
compiled with double precision.

type(test) :: f ! ’test’ extends fitfunc.
real(dp) :: dummy
!call init_integration() ! if necessary or
!call init_integration_dbl() ! if necessary.
call f%init()
call f%set(1, 1d0) ! Has just one parameter.
dummy = f%eval(2d0) ! Converts AD variable to real.
write(*,*) dummy ! Function value at 2.0.
call f%destroy()
call free_integration() ! Optional but never hurts.

Here and elsewhere, a dummy variable must be used since a component of a
function result of derived type cannot be directly referenced in Fortran.

If the only aim is to print the function value(s) at some point(s), then the
code can be slightly reduced by using the procedures of Sec. 4.5.2. After calls to
gadf_init and gadf_set, multiple instances of the function, each with an inde-
pendent set of parameters, are copied to the fitfuncs array, which is protected
(read-only public). The above code then reduces to

43

type(test) :: f
real(dp) :: dummy
call gadf_init(f)
call gadf_set(1, 1d0)
dummy = fitfuncs(1)%eval(2d0)
write(*,*) dummy
call gadf_close()

Another reason for directly working with the fitfunc class is the calculation
of derivatives using finite differences, which can be used for testing new AD
elemental operations. In the next snippet, the derivatives are calculated with
respect to parameters 1 and 3, while parameter 2 is passive.

type(test) :: f
real(dp) :: grad(2)
call f%init()
call f%set(1, 1.2d0)
call f%set(2, -0.1d0)
call f%set(3, 1d17)
call f%grad_finite(2d0, [1,3], grad)
write(*,*) grad
call f%destroy()

In order to calculate the 2nd directional derivative in the (0.3, 0.7) direction in
the space spanned by parameters 1 and 3, the above code can be modified by
inserting

write(*,*) f%dir_deriv_2nd_finite(2d0, [1,3], [0.3d0,0.7d0])

after the parameters have been initialized. See the documentation of
grad_finite and dir_deriv_2nd_finite in fitfunction.f90 for a better un-
derstanding.

Both finite differences and AD are always available regardless of the value
of USE_AD during configuration. This option only determines which one is used
during the fitting procedure.

Basic usage of the AD forward mode. In the forward mode, parameters
are made active by modifying both their index and d fields. In the interest of
compactness, here we shall set the parameter values directly instead of using
the more safe set procedure.

type(test) :: f
type(advar) :: dummy
call f%init()
f%pars = [1.2d0, -0.1d0, 1d17]
f%pars%index = [1,0,0]
f%pars%d = [1,0,0]
dummy = f%eval(2d0)

44

write(*,*) dummy%d
f%pars%index = [0,0,1]
f%pars%d = [0,0,1]
dummy = f%eval(2d0)
write(*,*) dummy%d
call f%destroy()

In order to calculate the 1st and 2nd directional derivatives in the (0.3, 0.7)
direction, the above code becomes

type(test) :: f
type(advar) :: dummy
call f%init()
f%pars = [1.2d0, -0.1d0, 1d17]
f%pars%index = [1,0,1]
f%pars%d = [0.3,0.0,0.7]
dummy = f%eval(2d0)
write(*,*) ’First dir deriv:’, dummy%d
write(*,*) ’Second dir deriv:’, dummy%dd

Basic usage of the AD reverse mode. The reverse mode is a bit more
difficult to use manually since the user has to be more acquainted with the
internal work variables of automatic_differentiation.f90. In particular, it
is necessary to set index_count to the number of active parameters (index of
the next AD variable will be index_count+1), and to initialize the array of
intermediate values. The gradient calculation with respect to parameters 1 and
3, as in the previous examples, can then be achieved as follows.

type(test) :: f
real(dp) :: dummy
call ad_init_reverse()
call f%init()
f%pars = [1.2d0, -0.1d0, 1d17]
f%pars%index = [1,0,2]
index_count = 2
forward_values(1:2) = [f%pars(1)%val, f%pars(3)%val]
dummy = f%eval(2d0)
!write(*, ’(g0)’) trace(:trace_count)
call ad_grad(2)
write(*,*) adjoints(1:2)
call f%destroy()
call ad_close()

Uncommenting the line after function evaluation shows what the execution trace
looks like after the forward sweep. If the function contains an integral, additional
calls to init_integration or init_integration_dbl and free_integration
are required.

45

Numerical integration. It is also possible to use GADfit just for evaluating
integrals, although if this is the only purpose, there are better tools out there.
The following example shows the calculation of

∫ ∞
0.5 e−x dx:

type(advar) :: dummy, pars(0)
call init_integration()
dummy = integrate(f, pars, 0.5d0, INFINITY)
print*, dummy%val
call free_integration()

contains
type(advar) function f(x, pars) result(y)

real(kp), intent(in) :: x
type(advar), intent(in out) :: pars(:)
y = exp(-x)

end function f

Creation of new elemental operations. New elemental operations can be
introduced in automatic_differentiation.f90. The main steps are:

• A new operation code is created.

• A module procedure is overloaded.

• In the reverse mode, the operation body is supposed to do the follow-
ing: the function body is evaluated; the newly created result variable is
given a unique index; the result of evaluation is saved in forward_values;
the indices of all arguments, that of the result variable, and the opera-
tion code are saved in trace; any constants are saved in ad_constants;
index_count, trace_count, and const_count are increased accordingly.
In the forward mode, the implementation is straightforward. In either
case, if the argument is a passive variable, only the function body is eval-
uated. For a better understanding, have a look at the implementation of
any unary operation in the source code.

• In the reverse mode, the calculation of the adjoints is implemented in the
return sweep (ad_grad).

5 Developer notes
5.1 C++
5.1.1 Unit tests

Unit tests are written using the Catch2 framework. Catch2 needs to be installed
separately if not already present on your system. The tests can be run with

cmake --build . --target test

or you can run them manually one by one. Each test is an executable in
c++/tests in your build directory.

46

5.1.2 Code linters

Before comitting, you should run clang-tidy on the source code. CMake has
built-in support for that so all you need to do is run

cmake -DCMAKE_CXX_CLANG_TIDY=clang-tidy .

in the build directory and recompile. You can keep this on but if it noticeably
slows down compilation you might want to turn it off during development with

cmake -U CMAKE_CXX_CLANG_TIDY .

We also use the clang-format code linter. However, since CMake does not have
built-in support for clang-format it is up to the developer to find a way to
run clang-format on the source code. As an example, you may run this in the
directory with the C++ source files:

find -regextype posix-extended -regex ".*\.(cpp|h)" -exec \
sh -c ’clang-format -style=file {} | diff -u {} -’ \;

If the code is perfectly valid, there should be not output. Otherwise, you should
resolve the diff. This requirement does not hold for the tests directory.

5.1.3 Code coverage

Code coverage can be inspected by enabling the INCLUDE_COVERAGE CMake
variable. This only works with the GNU compiler and requires LCOV to be
installed. The flags defined by COVERAGE_FLAGS are then appended to the com-
pilation flags (the default “–coverage” should be fine). If you then recompile
and run the tests, it shows you the overall coverage rate for lines and functions
and produces a detailed HTML report that you can inspect. Here is an example
of how to programmatically turn on the coverage flag, run the coverage, and
then turn it off again:

cmake -DINCLUDE_COVERAGE=ON .
cmake --build . --target coverage
cmake -DINCLUDE_COVERAGE=OFF .

5.1.4 Coding rules

Follow the C++20 standard. Otherwise, there are no additional coding rules
because clang-tidy and clang-format are already quite exhaustive. If those pass
you’re good to go.

5.2 Fortran
5.2.1 Coding rules

Programming principles

47

• Standard-conforming code. This project is committed to following the
Fortran 2008 standard (F2008), which is a minor improvement over the
2003 standard, but a major improvement over the commonly used Fortran
90, making coding much more efficient. It is not possible to list here all
the rules that the developer is expected to follow when writing modern
Fortran. There is not always a unique answer anyway. Many rules are
expected to be self-evident. Here we concentrate on rules specific to this
project and that are not standard in general for modern Fortran. A good
place to start is to examine an existing module in addition to reading this.

• Exception handling. Use check_err after allocate and open state-
ments. safe_close is optional and depends on factors such as the amount
of data written. For deallocation use safe_deallocate and, if necessary,
define a new subroutine for the safe_deallocate interface. For reporting
errors, warnings, and comments, use the appropriate procedures from the
messaging module.

• Compilation stage. The code should compile without any warnings
when using debug flags with GFortran and preferably also with Ifort,
although the latter is not a requirement.

• Preprocessor. Use preprocessor macros only for actual preprocessing
and not for something that is a short-hand notation for a Fortran state-
ment. Excessive use of macros makes it difficult for source code indexing
tools to navigate through the source code.

Format

• Statement order. A module should have the following format:

module <module_name>
<’use’ statements in alphabetical order>
implicit none
private
protected :: <list>
public :: <list>
<enumerators>
<constants>
<derived type definitions>
<interfaces>
<variables>
contains
<procedures>
end module <module_name>

Protected variables should not be listed after the public statement, but
declared public elsewhere. Also, the default private attribute is preferred,
but public is also acceptable where it make sense.

48

• Order of arguments. The order of arguments to a subprogram is
preferably the following: the pass argument, intent(in) arguments,
intent(in out) arguments, intent(out) arguments, optional argu-
ments.

• Case. Use lower-case everywhere except for named constants, enumer-
ators, and preprocessor keywords. Known mathematical constants and
variables can be mixed-case if more readable this way.

• Names. Use self-documenting variable names. The larger the scope the
more informative the name should be. Do not use the Hungarian notation.
Unless there is a good reason to do otherwise, the result variable of a
function should be y with the type specified in the function line.

• Spaces. Use spaces where allowed (in out, end do, etc.). Use one space
around most binary operators.

• Kind. Do not use syntax such as real*8 or real(8). Make use of
constants such as dp or kp.

• Line length. Limit the line length to 80 symbols. Not only is it good
for readability, but the compiler can be more informative about the line
number where the error occured. For continuation use ampersand on both
lines.

• Indentation. 3 spaces for do and if constructs.

5.3 Version control
GADfit is versioned using the Git version control system and all contributors
are expected to be fairly knowledgeable about Git. If unsure, work through the
first three chapter of the Git book: https://git-scm.com/book/en/v2 (then
work through the rest of it).

Here is a summary of the rules for writing Git commit messages:

• Separate subject from body with a blank line.

• Limit the subject line to 50 characters.

• Capitalize the subject line.

• Do not end the subject line with a period.

• Use the imperative mood in the subject line.

• Wrap the body at 72 characters.

• Use the body to explain the what and why and not the how.

See this blog post for a full exaplanation: https://chris.beams.io/posts/
git-commit.

49

https://git-scm.com/book/en/v2
https://chris.beams.io/posts/git-commit
https://chris.beams.io/posts/git-commit

6 Summary
Title of the program

GADfit
URL for the source code

https://github.com/raullaasner/gadfit
Programming languages

C++, Fortran (two independent implementations)
Distribution format

Git, gzip, zip
Nature of the problem

Nonlinear least squares regression
Method of solution

Improved Levenberg-Marquardt with multi-curve fitting
License

Apache License 2.0
Supported operating systems

Linux

7 Troubleshooting
A good place to bring up any issues is
https://github.com/raullaasner/gadfit/issues.

References
[1] D. W. Marquardt, J. Soc. Indust. Appl. Math. 11, 431 (1963).

[2] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Phys. Rev. Lett. 104,
060201 (2010).

[3] M. K. Transtrum, B. B. Machta, and J. P. Sethna, Phys. Rev. E 83, 036701
(2011).

[4] M. K. Transtrum and J. P. Sethna, arXiv:1201.5885 [physics.data-an] (2012).

[5] H. B. Nielsen, Tech. Rep. IMM-REP-1999-05 (1999).

[6] A. Griewank and A. Walther, Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, SIAM, USA, 2nd edition (2008).

50

https://github.com/raullaasner/gadfit
https://github.com/raullaasner/gadfit/issues

	Introduction
	Contributors
	Terms of use

	Method
	Modified Levenberg-Marquardt
	Global nonlinear optimization
	Automatic differentiation
	Forward mode
	Reverse mode
	Implementation
	AD with numerical integration

	Building and linking
	Building process
	C++ prerequisites
	Fortran prerequisites
	CMake configuration variables

	Runtime linking
	C++
	Fortran

	Notes on using GADfit in other CMake projects

	Usage
	Parallelism
	C++
	Fortran

	Example input
	C++
	Fortran

	Defining the fitting function
	C++
	Fortran

	Fitting procedure
	C++
	Fortran

	User interface
	C++
	Fortran

	Internals
	Fortran

	Developer notes
	C++
	Unit tests
	Code linters
	Code coverage
	Coding rules

	Fortran
	Coding rules

	Version control

	Summary
	Troubleshooting

